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1 Find the area of the region enclosed by the curve with polar equationr = 2�1+ cos1�, for 0≤ 1 < 20.
[4]

2 Prove by mathematical induction that 52n − 1 is divisible by 8 for every positive integern. [5]

3 The cubic equationx3 − 2x2 − 3x + 4 = 0 has roots!, ", '. Given thatc = ! + " + ', state the value
of c. [1]

Use the substitutiony = c − x to find a cubic equation whose roots are! + ", " + ', ' + !. [3]

Find a cubic equation whose roots are
1! + " ,

1" + ' ,
1' + ! . [2]

Hence evaluate
1

�! + "�2 + 1

�" + '�2 + 1

�' + !�2 . [2]

4 Let In = Ô 1

0

1

�1+ x2�n dx. Prove that, for every positive integern,

2nIn+1 = 2−n + �2n − 1�In. �5�

Given thatI1 = 1
40, find the exact value ofI3. [3]

5 Use the method of differences to show that
NÐ

r=1

1
�2r + 1��2r + 3� = 1

6
− 1

2�2N + 3� . [5]

Deduce that
2NÐ

r=N+1

1
�2r + 1��2r + 3� < 1

8N
. [4]

6 The matrixA is given by

A =
`4 −5 3

3 −4 3
1 −1 2

a
.

Show thate =
`

1
1
1

a
is an eigenvector ofA and state the corresponding eigenvalue. [2]

Find the other two eigenvalues ofA. [4]

The matrixB is given by

B =
`−1 4 0−1 3 1

1 −1 3

a
.

Show thate is an eigenvector ofB and deduce an eigenvector of the matrixAB, stating the
corresponding eigenvalue. [3]
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7 By considering the binomial expansion of
@Ï − 1Ï

A6

, whereÏ = cos1 + i sin1, express sin61 in the

form
1
32�p + q cos 21 + r cos 41 + s cos 61�,

wherep, q, r ands are integers to be determined. [6]

Hence find the exact value ofÓ 1
40

0
sin61 d1. [4]

8 The linear transformations T1 : >4 → >4 and T2 : >4 → >4 are represented by the matricesM1 andM2
respectively, where

M1 =
�

1 −2 3 5
3 −4 17 33
5 −9 20 36
4 −7 16 29

�

and M2 =
�

1 −2 0 −3
2 −1 0 0
4 −7 1 −9
6 −10 0 −14

�

.

The null spaces of T1 and T2 are denoted byK1 andK2 respectively. Find a basis forK1 and a basis
for K2. [6]

It is given thata =
�

1
2
3
4

�

. The vectorsx1 andx2 are such thatM1x1 = M1a andM2x2 = M2a. Given

thatx1 − x2 =
�

p
5
7
q

�

, find p andq. [4]

9 Find x in terms oft given that

4
d2x

dt2 + 4
dx
dt

+ x = 6e−2t,

and that, whent = 0, x = 5
3 and

dx
dt

= 7
6. [9]

State lim
t→∞ x. [1]

[Questions 10 and 11 are printed on the next page.]
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10 The curveC has equationy = 2x2 − 3x − 2

x2 − 2x + 1
. State the equations of the asymptotes ofC. [2]

Show thaty ≤ 25
12 at all points ofC. [4]

Find the coordinates of any stationary points ofC. [3]

SketchC, stating the coordinates of any intersections ofC with the coordinate axes and the asymptotes.
[4]

11 Answer onlyone of the following two alternatives.

EITHER

The curveC has equationy = 2 secx, for 0≤ x ≤ 1
40. Show that the arc lengths of C is given by

s = Ó 1
40

0
�2 sec2x − 1�dx. �4�

Find the exact value ofs. [2]

The surface area generated whenC is rotated through 20 radians about thex-axis is denoted byS.
Show that

(i) S = 40 Ó 1
40

0
�2 sec3x − secx�dx, [3]

(ii)
d
dx

�secx tanx� = 2 sec3x − secx. [3]

Hence find the exact value ofS. [2]

OR

The pointsA, B, C andD have coordinates as follows:

A �2, 1,−2�, B �4, 1,−1�, C �3, −2, −1� and D �3, 6, 2�.

The plane�1 passes through the pointsA, B andC. Find a cartesian equation of�1. [4]

Find the area of triangleABC and hence, or otherwise, find the volume of the tetrahedronABCD.
[6]

[The volume of a tetrahedron is13 × area of base× perpendicular height.]

The plane�2 passes through the pointsA, B andD. Find the acute angle between�1 and�2. [4]
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